a SkSemAutom

OUTCOME BASED CURRICULUM
ML-Driven Verification for Next-Gen SoCs

Exploring the Many Routes in VLSI!

VLSl isn’t just about chip design — it’s a universe of opportunities. From Front-End Design to Physical Design, Verification, EDA Tool
Development, and even Semiconductor Fabrication, every route plays a key role in bringing technology to life. This roadmap helps students
and engineers discover where their interests truly lie — whether it’s logic, layout, coding, or circuits.

ROUTES IN VLSI

VLSI J

A

[Front-End Design

A 4

4[Back-End Design J;

A 4 A

Verification & Analog / Mixed-
Validation Signal Design
e e ™
EDA Tools Development Analog / Mixed-Signal
Design
. | J
(
»| Verification &
Validation
. J
{)
Semiconductor
"| Process Fabrication
: ! \
BONUS: Embedded Systems
Embedded Systems \ y,

Master the Art of Semiconductor ML-Verification with Industry-Relevant Skills
Course Overview: This outcome-based course is designed to equip learners with essential ML-Driven SoC verification techniques,
focusing on SystemVerilog, Universal Verification Methodology (UVM), and automation scripting (TCL). The program blends
theoretical concepts with practical hands-on assignments, real-world design projects, and advanced debugging techniques,
preparing learners for industry-ready roles in semiconductor technology.
Core Technical Skills:
» Verilog Proficiency: Deep dive into Verilog, including RTL design, procedural blocks, and data types.
» SystemVerilog Proficiency: Deep dive into SystemVerilog, including RTL design, verification constructs, procedural blocks, and data
types.
» Universal Verification Methodology (UVM): Industry-standard methodology to improve the efficiency and reusability of verification
environments by Integrating with Machine Learning Algorithm:s.
Verification Techniques: Covers Black Box, White Box, and Gray Box verification approaches.
DFV (Design for Verification): Optimized SoC design strategies that streamline verification.
Hardware Simulation Tools: Exposure to Verilator for SoC simulation.
Automation with TCL: TCL scripting to automate verification processes, reducing repetitive workload.
Complete RISC-V Design and Verification using SV and Integration with ML
Python-UVM-RTL: Deep dive into python-UVM based Verification leads to ML Integration
UVM-ML: The UVM-ML framework that enables multi-language verification by allowing components written in different verification
languages—Ilike SystemVerilog (UVM-SV)—to work together in a unified testbench environment.
Practical Implementation & Assignments:
» Industry-based Verification Projects: Includes tasks such as Decade Counter Design, Scrambler/Descrambler Verification, FIFO design,
and FSM Optimization.
» Testbench Development: Building efficient RTL test environments using SystemVerilog and verification tools.
» UVM-Based Testbenches: Developing self-checking and object-oriented verification models.
» Simulation & Debugging Techniques: Includes coverage analysis, lint tools, and debugging strategies.
Additional Benefits & Opportunities:
» Hands-on LMS Access: Full access to learning materials, recorded classes, and assignments via SkSemAutom LMS.
» Internship Opportunity: Students can gain practical experience alongside learning.
» Placement Assistance: Guidance provided for securing SoC Verification Engineer roles.
» EDA Tool Access: Learners get permanent access to necessary design tools for hands-on practice.
» Interview Preparation: Includes SoC verification interview questions for job readiness.

vV V. V VYV VYV V V¥V

Course Structure & Duration:
» Format: 6-months online learning with daily live sessions.
» Total Learning Hours: 320 hours of intensive training. For 12,000 only! and early bird fees 310,000
» Complete Axis will be given to LMS (www.sksemautom.com) for Course Material, Recorded Classes, and Assignments
» Eligibility: M. Tech/ME/B.Tech/BE/MSc/BSc (Completed/Pursuing) (ECE/EEE/Electronics/Computer Science)

http://www.sksemautom.com/

Section

Section Name

Section Description

Lectures (Each Lecture is more
than 30 mints)

Learning Objectives (After Completion of each lecture the
Learner will be able to work on):-

Section-I

SoC Design
Verification

» System-on-Chip (SoC) Design

Verification is a crucial process in
ensuring the functionality,
performance, and reliability of
complex integrated circuits before
they are manufactured. It involves
testing and validating the design to
catch potential bugs and ensure
compliance with specifications.

» Soc Design Verification
» Assignment

» Importance of Verification

» Verification Plan and Strategies
» Verification Plan

» Functional Verification

Section

Section Name

Section Description

Lectures (Each Lecture is more than
30 mints)

Learning Objectives (After Completion of each lecture the
Learner will be able to work on):-

Section-I1

Verification
Methods

>

Verification methods in SoC design
ensure that the design functions a
intended before fabrication. Here ar
the main verification approaches:
Simulation-Based Verification
Uses testbenches to simulate the
design behavior under variou
conditions. Popular methodologie
include:

Register Transfer Level (RTL
Simulation: Verifies logic design.
Gate-Level Simulation: Checks
timing accuracy after synthesis.
Formal Verification: Mathematica
methods prove design correctness
without exhaustive simulations.
Model Checking: Analyzes stat
transitions.

Equivalence Checking: Confirm
that RTL code matches the
synthesized netlist.

» Verification Methods
» Assignment

> Black Box Verification
» White Box Verification
» Gray Box Verification

Section

Section Name [Section Description Lectures (Each Lecture is more than [Learning Objectives (After Completion of each lecture the
30 mints) Learner will be able to work on):-
Section-111 | Design for > Design for Verification (DFV) in » Design for Verification » Introduction
Verification SoC Technology refers to designing| > Assignment » RTL Test bench internal modules to simulate use case
integrated circuits with verification scenario of VLSI SoCs
efficiency in mind. Since > Aut(_)mated test environment
verification consumes a significan » Design and Verification Assertions
portion of the development cycle
DFV techniques help streamline this
process, making it easier to identify
and fix bugs.
Section Section Name |Section Description Lectures (Each Lecture is more than |[Learning Objectives (After Completion of each lecture the
30 mints) Learner will be able to work on):-
Section-1V | Verification » This section Describes how to writ¢ > Verification Examples » Decade counter Design and Verification
Verilog Code for verification wit{ » Verification Tools » self-synchronizing scrambler Design and Verification
Industry based Examples. It als¢ > Verification Language » Descrambler Design and Verification
covers different verification Tool Introduction > Simulators.
and brief explanation of Verificatiof > Assignment % e tools.
Language. 2 Lm_t .tOOI.S' . :
» Verification Language brief explanation
Section-V Verification » SystemVerilog (SV) is a powerful| > Introduction » ASIC Design Flow
Language hardware description and » Assignment » ASIC Verification .
Continued verification language (HDVL) » Strategies for SOC Verification
used extensively in digital » Verilog Constructs
design and SoC verification. It » Concurrent Assignments
extends Verilog with advanced » Procedural Block
features that enhance design » Introduction to SystemVerilog
modeling, simulation, and » SystemVerilog for Hardware Description and
verification. Verification
» Summary and Future Discussions

[> SystemVerilog Literal VValuesand
Data Types

VVVVYVYY

Predefined Gates

Structural Modelling

SystemVerilog Format Specifier
Multi-bit Constants and Concatenation
Literals

Data Types

A%

Summary

» Hardware Description Using
SystemVerilog
» Assignment

Introduction

The Net Data Type

Combinational Elements

always _comb to Implement the Code Converters
Understanding of Concurrency

Procedural Block always_latch

Procedural Block always_ff

Use the always_ff to Implement the Sequential Design
Instantiation Using Named Port Connections
Instantiation Using Mixed Port Connectivity
Summery

» SystemVerilog and OOPS Support
» Assignment

Enumerated Data Types
Structures

Unions

Arrays

Summary

» Important SystemVerilog
Enhancements
» Assignment

Verilog Procedural Block
SystemVerilog Procedural Blocks
Block Label

Statement Label

Module Label

Task and Function Enhancements
Void Function

Loops

Guidelines

Summary

» Combinational DesignUsing
SystemVerilog
» Assignment

YVVVVVVYIVVVVVVVVVVIVVVVVIVVVVYYYVYVYVYYVYY

Role of always _comb Procedural Block

Nested if-else and Priority Logic

Parameter and Its Use in Design

Conditional Operator and Use to Infer the Mux Logic
Decoders

Priority Encoder

Summery

» Sequential DesignUsing
SystemVerilog
» Assignment

VVVVVVVVYVYYY

Intentional Latches Using always_latch
PIPO Register Using always_ff

Using Asynchronous Reset

Using Synchronous Reset

Up-Down Counter

Shift Register

Ring Counter

Johnson Counter

Implement RTL for Clocked Arithmetic Unit
Implement RTL for Clocked Logic Unit
Summery

Section

Section Name

Section Description

Lectures (Each Lecture is more than 30 mints)

Learning Objectives (After
Completion of each lecture the
Learner will be able to work on):-

Section-VI

RISC-V

» RISC-V (pronounced “risk-
five’) is an open-source
instruction set architecture
(ISA) based on the principles
of Reduced Instruction Set
Computing (RISC). It was
developed at the University of
California, Berkeley, and is
now maintained by RISC-V
International.

» The RISC-V Architecture and
Instruction Set
» Assignment

Introduction to RISC-V
Technical requirements

The RISC-V architecture and
applications

The RISC-V base instruction set
RISC-V extensions

RISC-V variants

64-bit RISC-V

Standard RISC-V configurations
RISC-V assembly language
Implementing RISC-V in an
FPGA

VVVVVVY VVY

» simple RISC-V processor using
SystemVerilog
» Assighment

» RISC-V Design simulation using
Verilator

> IP-XACT & Automation

» Create XML templates for
RISC-V IP blocks

» Demonstrate automated
integration of RISC-V cores into
SoC verification environments

» Align with your IP-XACT
module goals for scalable
workflows

» RISC-V-AI

» Explore Al acceleration on RISC-
V as a capstone project

» Include compiler design, OS
porting, and performance
optimization

Section

Section Name

Section Description

Lectures (Each Lecture is more than 30 mints)

Learning Objectives (After Completion of each
lecture the Learner will be able to work on):-

Section-VII Universal > Universal Verification > Introduction to UVM > Introduction
Verification Methodology (UVM) is an > Assignment » Importance of UVM _
Methodology industry standard verification » Verification Planning & Coverage Diven
(UVM) methodology to define, reuse, Verification in UVM

and improve the verification
environment and to reduce the
cost of verification.

It provides certain application
programming interfaces
(APIs) for the use of base class
library (BSL) components in
the verification environment
making them reusable and tool
independent.

» UVM-Overview
» Assignment

» UVM Testbench and Environments
» Interface UVCs

» System and Module UVCs

» System Verilog UVM Class Library
» UVM Utilities

» SystemVerilog Interfaces and Bus
Functional Models
» Assignment

» Introduction

» The TinyALU BFM (Bus Functional Model)
» Creating a Modular Testbench

» Summary of Bus Functional Models

» Object-Oriented Programming (OOP)
» Assignment

» Introduction

» Importance of OOP

» Code Reuse

» Code Maintainability

» Memory Management

» Summary of Object-Oriented Programming

» Coroutines
» Assignment

» Coroutine Definition

» Coroutine-based Co-simulation Testbench
(Cocotb)

» Role of Coroutines in Cocotb

» Time-Consuming Functions Across Languages

» Summary of Classes and Extension

» Cocotb Queue
» Assignment

» Introduction

» Task Communication

» Blocking Communication

» Nonblocking Communication

» Simulating with cocotb
» Assignment

Introduction

Verifying a counter

cocotb triggers

Testing reset_n

Checking that the counter counts

» Basic testbench: 1.0
» Assignment

Introduction

The Tiny ALU

A cocotb testbench

Importing modules

The Ops enumeration

The alu_prediction () function
Setting up the cocotb Tiny ALU test
Sending commands

Sending a command and waiting for it to
complete

Checking the result

Finishing the test

Y V¥V VVVVVVVVVVYVYVYYY

» Tiny Alu Bfm
» Assignment

» Introduction

» The Tiny ALU BFM coroutines

» The tiny alu_utils module

» Living on the clock edge

» The Tiny Alu Bfm singleton

» Initializing the Tiny Alu Bfm object
» The reset() coroutine

» The communication coroutines

» Launching the coroutines using start soon ()
» Interacting with the bfm loops

» The cocotb test

> Class-based testbench: 2.0 > Introduction
» Assignment » The class structure

» The BaseTester class

» The RandomTester

» The MaxTester

» The Scoreboard class

» Initialize the scoreboard

» Define the data-gathering tasks

» The Scoreboard’s start_tasks() function

» The Scoreboard’s check results() function
» The execute_test() coroutine

» The cocotb tests

Introduction

How do we define tests?

How do we build testbenches?

How do we reuse testbench components?
How do we create verification IP?

How do multiple components monitor the
DUT?

How do we create stimulus?

How do we share common data?

How do we modify our testbench’s
structure in each test?

How do we log messages?

How do we pass data around the
testbench?

» Why UVM
» Assignment

VVV VVVVYVYH vy

YV VYV

» uvm_test testbench: 3.0 » Introduction
> Assignment » The HelloWorldTest class

» Refactoring testbench 2.0 into the
UvM

» The BaseTest class

» The Random Test and MaxTest

classes
» uvm_component » Introduction
» Assignment » build_phase(self)

» connect_phase(self)

» end_of elaboration_phase(self)
» start_of_simulation_phase(self)
» run_phase(self)

» extract_phase(self)

» check_phase(self)

» report_phase(self)

» final_phase(self)

» Running the phases

» Building the testbench hierarchy
» The uvm_component instantiation arguments.
» TestTop (uvm_test_top)

» MiddleComp (uvm_test top.mc)
» BottomComp (uvm_test top.mc.bc)
» Running the simulation

» uvm_env testbench: 4.0
» Assighment

» Introduction

» Converting the testers to UVM components
» BaseTester

» RandomTester and MaxTester

» Scoreboard

» Using an environment

» Creating RandomTest and MaxTest

Logging
Assignment

» Introduction

» Creating log messages

» Logging Levels

» Setting Logging Levels

» Logging Handlers

» Adding a handler

» Removing a handler

» Removing the default Stream Handler
» Disabling logging

» Changing the log message format

ConfigDB ()
Assignment

» Introduction

» A hierarchy-aware dictionary
» The ConfigDB().get() method
» The ConfigDB().set() method
» Wildcards

» Global data

» Parent/child conflicts

Debugging the ConfigDB ()
Assignment

» Introduction

» Missing data

» Catching exceptions

» Printing the ConfigDB

» Tracing ConfigDB () operations

UVM Factory
Assignment

» Introduction

» The create() method

» uvm_factory()

» Factory overrides by instance

» Using the create() method carefully
» Debugging uvm_factory()

UVM factory testbench: 5.0
Assignment

» Introduction
> AluEnv
» RandomTest
» MaxTest

» Component communications
» Assignment

Introduction

Why use TLM 1.0?

Ports

Exports

Nonblocking communication in pyuvm
Debugging uvm_tlm_fifo

VVVYVYYVYYV

» Analysis ports
» Assignment

» Introduction

» The uvm_analysis_port

» Extend the uvm_analysis_export class
» Extend the uvm_subscriber class

» Instantiate a uvm_tlm_analysis_fifo

» Components in testbench 6.0
» Assignment

» Introduction

» The testers

» Driver

» Monitor

» Coverage

» The Scoreboard

» Connections in testbench 6.0
» Assignment

The AluEnv TLM diagram
AluEnv.build_phase()
AluEnv.connect_phase()
RandomTest and MaxTest

YV V VY

» uvm_object in Python
» Assignment

Introduction

Creating a string from an object
Comparing objects
Copying and cloning

» Sequence testbench: 7.0
» Assignment

Introduction

UVM Sequence Overview
Driver

AluEnv

AluSeqltem

Creating sequences

Starting a sequence in a test

VVVVVVVIVVYV V

» Fibonacci testbench: 7.1
» Assignment

Introduction
Fibonacci numbers
FibonacciSeq
Driver

Sequence timing
AluEnv

» get_response() testbench: 7.2
» Assignment

Introduction
AluResultltem

Driver

get_response() pitfalls

YV V VY VVVVVY

Introduction

Launching sequences from a virtual
sequence

Running sequences in parallel
Creating a programming interface

» Virtual sequence testbench: 8.0
» Assignment

V'V VY

Introduction

Platforms and Simulators

UVM-ML Open Architecture: Status, Use
Backplane Architecture

Adapters

TLM 1.0 & 2.0 Support

Real time Use case studies with UVM-ML
framework

UVM-ML Frame work

UVM-based verification of RISC-V cores
ML-driven test generation for instruction
coverage

» Assignment

YV V'V
VVVVVVY

Thank You

